∫M(2,2),∠FOE=∠MEO=∠MFO=90,
∴OEMF is a square, OE=2, OF=2,
∴MF=ME,
∵ME⊥x axis is on the E axis, MF⊥y axis is on the F axis,
∴OM bisects ∠EOF, that is, OM bisects ∠ AOB;
(2)≈AMF+∠AME =∠AME+∠BME = 90,
∴∠AMF=∠BME,
At △AME and △BMF,
∠MEA=∠MFBME=MF∠EMA=∠BMF,
∴△AME≌△BMF(ASA),
∴AE=BF,
∴oa+ob=oa+of+bf=oa+of+ae=oe+of=4;
(3) Solution: The value of ON+ 12AB remains unchanged.
The reason is:
Pass p into q as PQ⊥ME, extend PQ to r, make QR=PQ, connect MR,
∫△AEM?△BFM,
∴MB=MA,
∫∠AMB = 90 degrees,
∴∠MBA=∠MAB=45,
∫OM shares ∠AOB, AP shares ∠BAO, ∠ boa = 90,
∴∠∠MOA=45,∠BAP=∠PAO,
∴∠∠MOA+∠PAO=∠MAB+∠BAP,
That is ∠MAP=∠MPA,
∴MP=MA,
∫∠MOE = 45,ME=OE=2,
∴∠OME=45,
∵PR⊥ME,PQ=QR,
∴MP=MR,
∴MB=MP=MA=MR,
∴∠RMQ=∠PMQ=45,
∴∠PMR=90 =∠BMA,
At △BMA and △PMR,
MB=MP∠BMA=∠PMRMA=MR,
∴△BMA≌△PMR(SAS),
∴AB=PR,
∴on+ 12ab=on+ 12pr=on+pq=oe=2,
That is, the value of ON+ 12AB will not change.